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NASA TT F-11,376 

THE PERTURBED GALERKIN METHOD AND THE GENERAL THEORY FOR 
NON-LINEAR EQUATIONS 

G.M. Vaynikko 

ABSTRACT. 
L.V. Kantorovich's general theory o f  approximate meth- 
ods f o r  t he  so lu t ion  of non-linear equations. 

This a r t i c l e  deals with the appl ica t ion  of 

The general theory of approximate methods developed by L.V. Kantorovich /723* 
[l], [2] plays a great  r o l e  i n  l i nea r  problems. 
i s  made t o  construct  an analogous theory f o r  nonl inear  equations. 

In t h i s  a r t i c l e  an attempt 

¶l .  Introduction 

The approximate methods considered i n  [l], [2]  can be in te rpre ted  as 
Let us c l a r i f y  t h i s  on the  bas i s  of  an the  perturbed method o f  Galerkin. 

example of an equation of the second order: 

x = T x + f  (1.1) 

where T i s  a continuous l i nea r  operator i n  t h e  Banach space E, and t h e  
operator I - T continousyreversible. The so lu t ions  of the  following 
equation a re  adopted as approximate solutions of (1.1) : 

xn = Tnxn Jr Pnfr (4 
where TnIL i s  a continuous l i n e a r  operator i n  enclosed sub-space Enlof space 

E , /  and Pnl i s  a continuou? l i nea r  operator of a pro jec t ion  onto the  sub- 
space E w ' .  Spaces E and E.,,\ and operators T and T,l are  r e l a t e d  by the  
conditions:  

2) f o r  any x E E' there  is such a =En' t h a t  

3) a t  a wr t a in  /,,=En 
- 

iir- t i l  qnn IlfIL )I 
/ 724 - 

Assuming conditions 
llZ'nIl~1n', IPnIIlln"+ 01 when ' 2  -+ 03i (1.3) I 

I 

t o  be s a t i s f i e d  i n  ( l ) ,  (2)  there  is  proven convergence of the  approximate 
*)Numbers i n  margin indicate pagination i n  foreign t ex t  



sr)J.utions t o  an exact one *) .  

We s h a l l  wr i t e  equations (1,2) as 

When 
where 8, = Tn - pnT/ i s  a l i nea r  operator i n  subspace E n -  A S n  = 0, t he  
equation (1.2 ')  i s  an (abs t rac t )  Galerkin method of solving equation (1.1) ; 
i n  t he  general  case (1.2) can na tura l ly  be ca l l ed  t h e  perturbed Galerkin 
method. Condition 1) s i g n i f i e s  t h a t  1lsnI < q n ,  and together  with (1.3) 
t h i s  has,as a consequence,the relat ionship 

ll&ll - t o .  when n 4  00. (1.4) 

I t  is not  d i f f i c u l t  t o  s e e  t h a t  i n  view of conditions Z),  3) and (1.3) we 
have (compared with remark 2 f o r  theorem 1 below) 

We can ve r i fy  t h a t  conditions (1.4) and (1.5) by themselves gua- 
ran tee  the convergence of the approximate so lu t ion  t o  an exact one **). 
This assumption, 1) - 3) and (1.3) may be replaced by l e s s  r e s t r i c t i v e  
conditions (1.4) and (1.5) .  This makes it possib,le i n  p a r t i c u l a r  t o  do 
away with r e s t r i c t i d n e s s  of projection operator  Pnl . The necessi ty  
f o r  such a general izat ion a r i s e s ,  f o r  example, when the  col locat ion meth- 
od i s  inves t iga ted  (See (3 ) ) .  

*) In [ l] ,  [2]  only subspace En< is assumed t o  be complete and E may 
be an incomplete l i n e a r  standardized space. L e t  us note  t h a t  i f  condi- 
t i ons  1) - 3) have been s a t i s f i e d  i n  t h e  case of an incomplete E ,  these 
conditions a l so  remain s a t i s f i e d  for  t he  completion o f  E and operator T 
which i s  extended with respect  t o  continuity.  
e t i c a l  standpoint the  assumption concerning the  completeness of E does 
not r e s t r i c t  the  genera l i ty .  

Therefore, from t h e  theor- 

**) This f a c t  can be eas i ly  proved d i r e c t l y .  I t  can, however, be 
obtained from theorem 3 (see below) by wri t ing equation (1.1) ' i n  the 
form Z - I - Z ~  with nonlinear operator rt ,= TX + f ( i n  the  form- 
a t ion  of theorem 3 ,  T must be replaced by r ) .  
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The above remarks w i l l  be taken i n t o  consideration when nonlinear 
equations a re  inves t iga ted .  The analog of approximate equation (1.2) 
w i l l  be immediately given i n  t h e  form of ( 1 . 2 ' )  and t h e  convergence con- 
d i t i o n s  w i l l  be formulated i n  terms analogous t o  ( 1 . 4 )  and (1 .5)  

q 2. The Perturbed Galerkin Method f o r  Nonlinear Equations 

I n  Bonach space E l e t  us consider equation 

x = Tx 

with a nonlinear operator T which i s  continuous on an open s e t  Q c E .  

Let (e,} be a sequence of closed subspace i n  E ,  and i e t P ,  be a 
l i n e a r  operator of pro jec t ion  i n t o  space E,,, f o r  any value 
z from t h e  domain of operator P,: and PnZn = zn Operator Pn 
can a l s o  be unbounded, and i n  sdch a case it i s  a s s G e d  t h a t  t h e  range oT 
values of T (.Q ) of operator T on il i s  included i n  t h e  domain of P ,  , and 
t h a t  operator P,Tiis a lso continuous on R .  

i .e. , Pnz E En\ 
f o r  zn € E n . :  

/725 

A s  approximate so lu t ion  of equation (2.1) adopted a r e  t h e  so lu t ions  
of equations 

51, = Pnlkn + Snxn , (2.2) 

( t h e  perturbed Galerkin method) , where Sn'  i s  a sene ra l ly  nonlinear opera- 
t o r  i n  space &;, continuous on t h e  s e t o n  = Q n E n .  [Equation (2.2) i s  considered 
i n  E n -  

Below w i l l  be given two proofs of convergence of t h e  perturbed G a l -  
(2 .2) .  The f irst  proof makes use of t h e  concpet of t h e  e rk in  method 

r o t a t i o n  of completely continuous vector f i e l d  ( s e e  ( 4 )  ) , and accordingly, 
operator T , P n T  and S n  a r e  assumedto be completely continuous. 
ond proof i s  based on t h e  pr inc ip le  of compressed mappings, and ins tead  of 
complete cont inui ty  the re  i s  intrjduced t h e  assumption of operator d i f fe ren-  
t i ab i  li t y . 

The sec- 

The obtained r e s u l t s  a r e  t r ans fe r r ed  i n  t h e  usual manner t o  t h e  case 
where t h e  approximate equation i s  given not f o r  subspace En, but f o r  some 
o ther  Banach space B n ,  which i s  lsomorphic t o  E n  ( s e e  ( 1 ) , ( 2 )  ). 

For t h e  sake of simplifying t h e  formulation, w e  s h a l l  l i m i t  ourselves 
only t o  equation (2.2) i n  subspace E ,  cB. Even though in the application t h e  
exact equation and approximate equa-cion a r e ,  as a r u l e ,  given i n  d i f f e r e n t  
space; it i s  usua l ly  not d i f f i c u l t  t o  wr i te  an equivalent equation i n  t h e  
form of (2.1) and (2 .2) .  

We sba$l henceforth everywhere adhere t o  t h e  nota t ion :  I i s  an i d e n t i t y  
o p e r a g p  , p(n) - pn, p(x, gl) i s  t h e  d is tance  of po in t  x t o  s e t  
!VZ c E./ 
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m3. The f i r s t  Proof of Convergence 

I n  t h i s  seciia,? yeessh&ll assume t h a t  t h e  s e t  Q -  C E i s  bounded, 
operator  T i s  determine2 at,, 0 = 0 Ur and does not have at the  boundary 
r t h e  s e t  Q of f ixed  points .  For t h e  sake of s impl ic i ty  l e t  us a l s o  assume 
t h a t  r, = rn Qn 
n fl E - i n  E ~ .  

i s  f o r  each value of n t h e  boundary of t h e  s e t  Rn = 

n 

Let us denote by X ( X  C Q) a closed s e t  cons is t ing  of t h e  f ixed  
0 poin ts  of operator  T i n  R 

i s  not empty i f  operator T i s  en t i r e ly  continuous on 3 
of t h e  vector  f i e l d  x - Tx on r d i f f e r s  from zero: 
Let us denote by X n ( X n C  R ) t h e  se t  of so lu t ions  of equation (2 .2)  i n  ann’ n 

n = R u r 
and furtheremore: 

( s e t  of so lu t ions  of  equation (2.1) ). Set  x0 
and t h e  r o t a t i o n  

y(1 - T;  r )  # 0 .  

Theorem 1. Let operators  T and P T be e n t i r e l y  continuous i n  t h e  s e t  - n and operator S e n t i r e l y  continuous on t h e  s e t  an = Qnu rn,  n 

_-- 
(3.1) - xsz . I 

Then i f  y(1 - T ; r )  # 0 ,  w i t h  s u f f i c i e n t l y  l a rge  values of n t h e  s e t  Xn 
1 7 2 6  of t h e  so lu t ions  of equation (2 .2)  i s  not empty, and - 

Proof. By cont rad i t ion ,  it i s  easy t o  prove t h e  exis tence of such a constant 
a > O  such tha t  

( r e c o l l e c t  t ha t  Xo does not contain poin ts  of l’ ) .  By v i r t u e  of t he  
f irst  of t h e  conditions of (3.1), with s u f f i c i e n t l y  l a rge  values of 
( l e t  t h i s  be when n. ’>, no ,) , we have 

n 

(3.4) 

From conditions (3 .3)  and (3 .4)  it follows t h a t  vector f i e l d s  x - Tx and 
x - P Tx a r e  isoniotopic  on T ,  and therefore  n 

Further ,  from t h e  de f in i t i on  of t h e  ro t a t ion  of a vector f i e l d  it follows 
t h a t  with s u f f i c i e n t l y  l a rge  values of n ( l e t  t h i s  be when n 2 ni, ni 2 no) ‘ 

( i n  t h e  right-hand p a r t  of t h e  equation I - P T i s  regarded as an operator n i n  E 1. Therefore,  n 
y(Z - PnT; I?,) # 0 (n 3 n i ) . ~  

4 



According t o  ( 3 . 3 )  

By v i r t u e  of t h e  second 

and ( 3 . 4 )  we obta in  
U IlS - P n T 4  2 -2 

condition (3.1), when 
I 

a l 
(5 E r n )  *~ llsn~nll < -4 

From i n e q u a t i t i e s  ( 3 . 6 )  and (3.7) we conclude 

. I  

(5 n 3 ni). ( 3 . 6 )  

n 2 n2 (nz 3 nilL, 
' t  

(3.7) 

t h a t  vec tor  f i e l d s  x - P,Tv 

and (see(3.5)) y(Z - P,,T - S n ;  r n )  f 0. 
has i n  

Therefore the  o p e r a t o r  I - PnT -Sn 
n a t  least one fixed. po in t ,  i .e.,  when n > n 2 s e t X n  i s  not empty. 

Let us prove r e l a t ionsh ip  (3.2). L e t  i t  be given t h a t  E > O ,  and 
l e t  us surround each point x o ~  xo by an  open sphere with a rad ius  not 
g r e a t e r  than E and with the  center  i n  x , e n t i r e l y  contained i n n .  We 
s h a l l  denote the  thus obtained convergisg of set x, by X o 6 .  It is  c l e a r  
t h a t  i n  closed set 6 \ X o  t he re  are no fixed poin ts  of operator T. Let 
us take such a number a€> 0 t h a t  

113 - ~ ; t l l  5 ae (Z E E\x~c). 

By v i r t u e  of conditions ( 3 . 1 ) ,  with s u f f i c i e n t l y  l a r g e  values of n (when /727 - 
n > n ,  1 

Thus, when n> n,not a s ing le  poin t  of t h e  set Xn can be s i t u a t e d  i n  
a\Soe,l.e., X,, c Xoe . 
equivalent t o  t3 .2) .  Theorem 1 h a s  been proven. 

-- I n  v i e w  of the a r b i t r a r i n e s s  of E 10 t h i s  i s  

The proof ca r r i ed  out i s  a va r i a t ion  of t he  reasoning used f o r  ( 4 )  i n  
proving t h e  convergence of t he  Galerkin method. 

Corrolary. Let t he  conditions of theorem 1 be s a t i s f i e d .  Then i f  
equation (2.1) has a n  i so l a t ed  so lu t ion  x+Q with a nonzero index, then 
such values of u,> 0 and n,, can be found, t h a t  when nl no equation (2.2) 
has i n  sphere xoll < 60' at l e a s t  one so lu t ion  q,. The correspondence 
J1xn - r o l l  +3 takes place when n + OD. 

This confirmation we obta in  from theorem 1, taking as a "new" set Q 
t h e  sphere 1 '  
that t h e  u n i q u e e m  of+@proximation % may, with a s u f f i c i e n t l y  l a rge  
value of n, be v io l a t ed  i n  any sphere 1 l x  -soli < b., 

112 -xol1 < tq of a s u f f i c i e n t l y  small rad ius  u0. L e t  us note 

L e t  us poin t  out c e r t a i n  in su f f i c i en t  conditions f o r  t he  s a t i s f a c t i o n  
of t h e  f i r s t  of r e l a t ionsh ips  (3.1). 

5 



Remarks: 1. Let Banach space E ‘ c E  be continuously inserted into 
E. Let operator T transfer a into a subset which is compact in E’, and 
let projection operators p n  (n 
E into E and let them tend strongly toward the operator of the insertion 
E into E. Then 

. . .) 1 be bounded as operators from 

The 

2. 

proof can be easily carried out by contradiction see (3).  

Let the operators Pn (n 4, 1.2, ...) be limited in E and 
IIPnIIlln -+O when n + w .  

Then (3.8) takes place. (Operator T does not have to be entirely con- 
t inuous . ) 

m 4 .  Concerning the Solubility of the Nonlinear Equations 

Recollect that operator T, determined on the seta is called differ- 
entiable operators according to Frechet in point z 0 = ~ . ,  if with any suf- 
ficiently small, with respect to the norm, element h E E I (such that S O +  h€i 
Q )  

, the increase of T [z0+ h )  - Txo can be introduced’ in the form of 

T ( z o  + 1’)- Tzo = T’(zo)h + o(z0; h ) ,  (4.1) 

where T ’ b )  
of operator T in point X O )  , and h)(Xo;  h)II / llhll - t o  

is a linear continuous operator in E (a Frechet derivative 
when llhll +O. 

I 7 2 8  - If T is differentiable in every point of the segment connecting 
points Xo and XO + h ,  and U is any continuous linear operator in E, then 
see (2). 

In particular, assuming U = T ~ O ) , ’  we have 

6 



Operator T is called continuously differentiable in point xo,  if it 
is differentiable in every point of a certain vicinity of point xo, and 
furthermore llT'(x) - T'(x0) 11 + O (  When n -& 00. 

Let T and be continuous operators on the open set Q c E .  Let us 
determine the conditions under which the solubility of one of the equa- 
tions, z =  Tz  and x =  Tx leads to the solubility of the other. 

Theorem 2. Let the equation x = Tx/ have the solution 20 E ' , and 
let the following conditions be satisfied: 

a) operator T is differentiable according to Frechet in certain vi- 
cinity of point 
uous ly invertible ; 

zo, and furthermore linear operator I- T'(5o) is contin- 

b) at certain values of u and (6  > 0,o < (1 < l) the inequalities 

(4.4) 

are valid.*) 

Then equation = Tx has in the sphere llz - zoll < 6 the unique 
solution zo, The inequality 

is valid. 

Proof. From equation 5 = ~ d w e  subtract the equality Zo = TZO~ term 
by term, and transform the result 

Applying to both parts , operator [ I  ' T'(%) 
sult that equation 

we obtain the final re- 
=  is equivalent to equation x = A s ,  where 

AX E= Eo + [I - T'(Zo)] -1 [ TX - TEo - T'(Z0) (X - 3 0 )  + (Tzo - Tz,>\: 
- 

I 
Let us show that A i s  t h e  compression operator  on t h e  sphere\ Ib -&/l < 6 ', 

Actually, by virtue of an analog of inequality ( 4 . 3 )  for operator 
[Z - T'(z~)]-~ when I I x  - zo1l < 61 we have 

___  - 

II[I- T'(ZO)]-~[Z'Z- Z'Zo-T'(%o) (Z-%)]II < 
\ e llx - Eoll sup II [I- T' (zo)]-i IT'(f0 + 0 (5 - Zo) ) - T' (.TO)] f i ;  (4.7) 

o<eci 

*) The number 0 is assumed to be so small that the sphere 
is contained inR . 
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taking inequalities (4.4) and (4.5) into consideration, we find 

IlAx - zo’oll 4 Ib - &ll (1 4- U < 6q + 6 (1 - q )  = 6, 
I _  

i.e., A transfers sphere Ilz-6d G61 into itself. Let xi !  and z2, I be 
two points of sphere llz -- 5011 f 6.  ’ we have 

A z j - A 5 2 =  [I-T‘(E~)]-‘[T~~-Tx,--’(~~) ( . ~ i - ~ g ) ] .  1 

Let us write unequality (4.2) for operator [ I  - T’(zo)]-’T 1 
points XO+ h 
and [ I  - T’(Zo)]-iZ”(.?~)): 

(the role of 
and .T,, and operator u is played, respectively, by xl, 

II [I--’(~0)]-‘[Tzi--x2-TT’(~o) (xi-22)][( < \ 1 2 i - ~ 2 1 1  x 
X SUP II [ I -  T’(50)1-’[T‘(~2+ O(~i-x2))-T’(Zo)] /I. 
oeoei 

I 7 2 9  - 

i.e., operator A compresses the sphere b - zoll < 6 . 
According to the principle of compressed mappings, the equation 

z = Ax,i and along with it also equation x = T;z: , have in sphere Ilx -So! < 6 
the unique (general) solution 20. We have 

5 0  - go - - Axo - zo = [I  - T’(fo)]-’[Txo - T% - 
- T‘ ($0 )  (50 - EO) -k ( T ~ O  - TZO)],  

whence, using (4.7) and ( 4 . 4 ) ,  we obtain 

The last inequalities are equivalent to estimate (4.6). 
been proven. 

Theorem 2 has 

Corollary: Let operator T be continuous on an open set R and dif- 
ferentiable according to Frechet in a certain vicinity of point x* E Q,,’  
and furthermore let linear operator I - T’(z.). 
For certain values of b and q ( 6  > 0, 0-< q < l)!, let inequalities 

be continuously invertible. 

(4 .8 )  

be valid. 
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L ' I  

Then equation x = Tx has in sphere b-Z. l l  < 6 this unique solu- 
tion*Xo , and the estimate is valid, 

a a -=z 11s. - r o l l  G - - 
I + P  1-9' 

Actually, .To=z..  is the solution of equation 

and it can be verified without difficulty that for 
x = T 5  and x =  T r  all the conditions of theorem 2 

(4.10) 

/ 730 - x = !&, where 

the equation pair, 
are satisfied. 

Inequality (4.10) will be used in ¶ 7  in deriving estimates of the 
error of the perturbed Galerkin method. To establish the fact of con- 
vergence, we shall in the next section use a somewhat cruder, but more 
convenient formulation of theorem 2. Let us interchange the roles of 
operators T and T. 

Theorem 2'. Let equation x = Tx have the solution ZoEn , and let 
the following conditions be satisfied: 

a) operator T ig differentiable according to Fresche in a certain 
vicinity of point "04 and furthermore linear operator 1 -  p(zo) 
tinuous invertible, 

is con- 

I I  [I - T' (zo) 1-111 < x ;  (4.11) 

b) for certain values of u and q (6 > 0, O <  q < 1) I, inequalities 
(4.12) 

(4.13) 

are valid. 

The equation x = Tx has a unique solution in sphere 113 -Xdl  < 6 . 
¶5. The Second Proof of Convergence 

Theorem 3. k t  operators T andP,T!be continuous on an open set 
s? c E,,and let operator &!be continuous on an = Q n E n .  Let the equation 
(2.1) have the solution z o ~ R I  , and let the following conditions be 
satisfied : 

' *  In connection with the proof of the convergence of Newton's method 
in (l), (2) an analogous result has been indicated under the assumption 
that operator T is twice differentiable and that the second derivative is 
bounted on sphere Ilz - 1.11 < 6. ~ 

~ -, - - 
* 5 j- 

- _  9 - "  
.. 



1 1 

I 

2) the operator T is continuously differentiable according to 
Frechet in the point 3, and linear operator 
invertible; 

- ‘p(s0) is continuously 

3)  operator G T i s  differentiable according to Frechet in a certain 
vicinity Ila: -x,,ll < 0 of point xo (as an operator in E) , and furthermore 
(PnT)’ (x) PnT’ (x) and for values of E >  0 such values of n, 
(0 < GE < a) will be found, that 

and 4 

4 )  operator Sn is differentiable according to Frechet at points of 
intersection of sphere 11s - zoll < a with E, (as an operator in En) , and 
furthermore, for every value of 6 > 0 such values of 3’ 
t h a t  

and 4’ (0 < oE’ < IS) I 

Then such values of no and 5 > 0 will be found, that the solution 
xo of equation (2.1) is unique in sphere 
equation (2.2) has in this sphere the unique solution x, 
Ilr, -z,,ll-~O ’ . occurs when n+@, and the bilateral estimate (cl, c2 = 
const. > 0) 

11s -zoll < 60 1 and when n >  120 

Convergence 

(5 1) ci I i f i n ) . ~  - SnznII < Ilsn -zoll < ~2 IiP(n)z~ - Sn+nll. 

is valid. 

Before proceeding to the proof of the theorem, let us note some con- 
sequences of its conditions, which will be repeatedly used in the follow- 
ing sections. 

1. From condition 3)  of the theorem, it follows that 

l Z - - t O o .  ‘ (5.2) I 
I\f‘(’‘)T’ ( J o )  \I * 0 when 

2. 
!Iz -roll < 61 and n 2 111.1 , operators I - T’ (x) and I - P TI (x) an inver- 
tljble-in E, and operator I - p , T ’ ( x )  - s , ~ / ( ~ )  is invertible in En, and 
fwghennor e 

There exist such values of 1 1 1 ,  6, > 0 and x = const, that when 

-..-- 

l l ~ Z - T ’ ( ~ ) l - ‘ I l ~  x (II.-zoll <Si ) , ,  (5.3) 

(112 - zoll G 61; (5.4) , 
(liz - ~ O I I  G 61, x E l i n ;  n 2 1 8 1 ) .  1 

‘(5.5) 

11 [ I  - P n T / ( s ) ] - ‘  II < x 
I I [ I  - P , T / ( ~ )  - ~,:(z) 1-111 < x 

n 2 m )  9 

Actually, the (5.3) proceeds directly from condition 2) of the theorem-, 

? 

I 

i 

/731 

* From Ilrc*)toll - 0  it follows that P n ~ O ~ ~ , ~  for sufficiently large 
values of h . 
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and (5 .4)  then proceeds directly from condition 3 )  and (5.3)*.) Estimate 
(5.4) remains in force, if I - P,T’(x) is regarded as an operator in En. 
Hence and from condition 4 )  of the theorem we obtain (5 .5 ) .  

3 .  For every value of E > 0 there will be found such values of uE 
and hE that 

IIPnT’(z) - P,T’(zo) I I  4 E (115 - r o l l  4 a&; n 2 ne) .  

Actually, in accordance with conditions 2) and 3)  of the theorem, let us 
select, ‘JE and n’g in such a manner that when 11s -zoll & oe, and n 2 n, we 
would have 

Proof of theorem 3 .  The isolation of solution x, of equation (2.1) 
proceeds from the invertibility of equation I -  T’(zo)l . 
solubility of equation (2.2) as an intermediate step, let us carry out 
the proof of this fact first for the (unperturbed) Galerkin method 

In proving the 

In contrast to equation (2.2), equation (5 .7)  may be studied both in sub- 
space En and in subspace E. The solutions of equation (5 .7)  belong to En. 

Let us show that for sufficientlv larne values of n, for equation 
(5.7) the conditions of theorem 2’ ( T = P ” T )  are satisfied. 
i s  satisfied in view of condition 3) of theorem 3 and inequality (5 .4)  for 
5 =zo. Let us show that condition b) is also satisfied. For this purpose, 
let these be given to a certain q(0 < q < i), ,and then let these be any 
sufficiently small value of u > 0, so that with sufficiently large values 
of n there would occur the inequality (see (5 .6 ) )  

Condition a) 
- /732 

which corresponds to inequality (4.12). Inequality ( 4 . 1 3 )  is also valid 
for sufficiently large values of n, because according to condition 1) of 
theorem 3 

* In (5 .4)  the constant% will, generally speaking, be greater, and 
the constant&, will be smaller than in (5 .3 ) ,  but after (5.4) has already 
been determined, x can be increased and 01 can be decreased in (5 .3 )  in 
such a manner that these constants would be equal in (5.3) and (5 .4) .  An 
analogous remark pertains to (5.5). 

11 



Thus, starting with a certain 1 2 = 1 z 6 ,  all conditions of theorem 2' are 
satisfied and, consequently in sphere llz 
unique solution xnol of equation (5.7). 
siderations was aditrarily small, the convergence 1 1 ~ ~ 0  - $rl+o( when 
I i 6.- b 

sol\ G 6 !  there exists the 
I Since the value6> 0 in our con- 

is s imul t aneous ly proved. 

In order to determine the solubility of equation (2.2), let us now 
apply theorem 2' to equations ( 5 . 7 )  and (2.2). The first of these equa- 
tions plays the role of an "exact" equation, and the second - plays the 
role of an "approximate" equation x - T x ;  both equations are examined in 
the space E,. Since Zno- - t sq  when n-+ m, with sufficiently large values 
of n condition a) is satisfied: 

Let these again be given some value of 
take any such sufficiently small value of 
large values of n we would have 

q (0 < q < 3); and let us then 
> O l ,  that with sufficiently 

4 
SUP IIPnT'(5) - PnT'(xn0) 11 < - ; 

l l ~ - x ~  IlG6 3% 
This is possible in view of (5.6) and the convergence ll~no-zOl130* 

Decreasing if necessary, the value d we can in view of condition 4) of 
theorem 3 consider that with sufficiently large values of n is also valid. 

4 
s ~ p  IIsn'(i) II G - - Ilx-xn11~6 3% 

To sum up, we obtain this fact that with sufficiently large values of n, 
the analog of inequality (4.12), 

(5.8) 9 
SUP II (PnT'(3) + Sn'(x)l- PnT'(zno)  + &'(sno)l I1 4 -. 

Ilx,-~; 1166 x 
is valid. 

Finally, the analog of inequality (4 .13 )  

(5 .9)  JlSnxnOll < w - q)  
X I 

is also valid with sufficiently large values of n), because from conditions 
1) and 4) of the theorem it follows that 

M'n~n0II < IISnPnsolI + IISnsno- SnPnzoII < IISnPnsII + + SUP 1ISn'(Sno + 8, ( P n s  - s n 0 ) )  II llZn0- Pnxoll+ 0 when n -+ 00; 
o c e n c l  

I 7 3 3  - Thus all the conditions of the analog of theorem 2 '  are satisfied, 
and hence the conclusion drawn that equation (2.2) has, when IZ 2 1'6 in a 
sphere Ilx - x,,O11 < fi , the unique,,.solution Xe.  
in our considerations be arbitrarlly small, and - Jol l  -? 0 when n+ 05, 

it also follows that 
solution of equation (2.2), also in a sphere Il.z---soli < 50. . The value 5~ 
may be chosen so small, that in the indicated spnere there will be no other 
solution of equation (2.1) except X , .  

Since the value b > 0 ,  could 

when it  -P co, and r n  will be the only hTL - 1-011 -2- 0' 

12 
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(5 . 10) 
Using formula (4 .3 )  for operator P,,T, we find 

if > ne and Ilr,, - Xull < 6, (see 5.6)). Because 1 b n  - Zo!l-* 0 when IL-+ 00, 

the last inequality will be satisfied for sufficiently large values of n, 
and in view of the arbitrariness of E 

Since norms I!/ - Z‘nT’(.ro) I (  and I \  11 - / ’ , ,?‘’!r~\  7 ( 1 ,  52 ) ( I ) )  are bounded in 
their set (see (5.2) and (5.4)), it follows from (5.10) and (5.11) that 

(5.12) 

Theorem 3 is completely proven. 

Let us supplement the assertions of theorem 3 by a series of remarks. 

Remarks. 1. Under the conditions of theorem 3 the rate of convergence 
is characterized by the relationship 

1 1 ~ ~  -z,D = (1 +yn)il [ I - - ’ ( s o ) l - ’ ( p ‘ ‘ ) r , - - S n z n ) l l  (~1’0 n + o o ) .  

This result proceeds from (5.12) and (5 .2 ) .  

The next remark will be used in II 8. 

2. Under the conditions of theorem 3 the following bilateral esti- 
mate is valid: 

(5 . 13) 



For the sake of proof let us subtract from equality t n  = P n T t n - I - S n z n  
By making simple the equality P,+o - PnTPnxa + (P.Tzo - PnTE'nzo), 1 term by term. 

transformations, we obtain 

(5.14) 

I734 - 
(5.13') I 

3. Under the conditions of theorem 3 is valid the estimate (c=cons l )  

where xrl  and xn0 are the solutions of equations (2.2) and (5.7), respec- 
tively. 

Actually, the existence and uniqueness of solutions Y,, and x,," has 
been determined in the proof of theorem 3; it was noted that IISnznOll-+OWen 
n - ~ .  To derive at estimate (5.15) let us write inequality (5.9) with 
the smallest possible constant d i.e., we shall assume 

x 
IlS n .Z noli 6 = 6. = -- 

1 - 9  

and thereby shall convert inequality (5.9) into an equality. It is clear 
that in equality (5.8) remains also in force when 6 = tivl. . Again applying 
the already used analog of theorem 2 ' ,  we conclude that with sufficiently 
large values of n equation (2.2) has in the sphere Il.z-z,,@~~ < 6, 
solution. By virtue of the uniqueness in the sphere 115, -xnoll sg a,, (see 
theorem 3) , this solution coincides with x,. 
and this is estimate (5.15) 

a unique 

Consequently llz - z0ll G b,i 

The following propositions are proved by means of analogous consid- 
erations. . 

4 .  k t  the conditions of theorem 3 be satisfied when S, = Sn") ( i ,=  3 ,  2).\ 
Then 

14 
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where ~ , , ( i )  is the solution of equation (2.2) when Sn ( i = 1 * 2 ) -  ’ . 

Remarks 3 and 4 allow investigation of the stability of various ap- 
proximate methods with respect to comparatively minor errors in the equa- 
tion system of the corresponding methods. 

In proving estimate (5.1), we have essentially determined the follow- 
ing result. 

Lemma 1. Let x, and xq be the solutions, respectively, of equations 
(2.1) and (2.2) correspondingly (Ixn -xoll -0’when n + oo., Let the operators 

and furthermore: 

P,,T ( I t  = 1, 2, . , .) be differentiable according to Frechet in point xo , 
PnT(xo+ ~ ) - - ~ T x o = ( P ~ ~ T ) ’ ( ~ o ) I L + o ~ ( ~ ~ ;  h ) ~  

2) operators Z - (PnT)’(zo) 1 are continuously invertible 
and norms 

II~-(f‘n’i”)’(xo)ll, I1 [J-((P~T)’(ZO)I-‘II (n 2 nl) t ~ 

are bounded in the set. 

Then estimate (5.1) is valid. 

Let us note that condition 1) is definitely satisfied in the tendency 
IlQ, (“a; h )  !I / l lhl l3  0 i when 11h11 .-t 0 is unif orm with respect to n. 

The theorem 3 can be modified in several ways. We shall not devote /735 
time to this question. Let us merely note some more particular assertions 

. which, however, are more useful for applications. 
Theorem 4 .  Let operator T be continuous on open set !2 C E!  equation 

(2.1) have the solution Z O E Q  and the following conditions be satisfied: 

1) operator T is continuously differentiable according to Frechet in 
point r, and linear operator I - T’(zo)j is continuous invertible; 

value of z E Elthe inequality 
2) for any value of x from a vicinity Ila:-~oll < cr point xo and for 

P (T’(5)zt En) < qn’ IlzII 01 = i , ~ ,  . . .) ; 

is satisfied; 
- 

3) operators P ,  ( n  = & 2 , .  are bounded in E, and furthermore 

*) For the fulfillment of relation ~ ~ w ) ~ ~ ~ ~ + o  it is sufficient that P(zo ,E, , ) \  
llPnll + 0 1 when n -. 
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. 

4) operators S, are continuous and differentiable according to 
Frechet in the set 9, = Q n E,,,jand furthermore 

SUP llsnzll--+ 0, SUP Ilsn'(S) 11 + 0 when n --f a. 
X€Qn X€nn I 

Then the conditions of theorem 3 are satisfied. 

(5 . 16) 

Verification is only required for condition 3)  of theorem 3. Using 
conditions 2) and 3) of the theorem undergoing proof, we obtain when 
ilx -- roll < (T and any 5 e E, 9 

lpwT'(S)ZIl < lpql p ( T ' ( + , z ? n )  < (1 + llKll)q*' 1141, 
whence I 

(IP(I')T'(S) I I  < (1 + l l ~ n I l ) ~ n ' - +  0, when n-h O0 (112 -soli < e), 
Thus condition 3)  of theorem 4 )  is satisfied. 

e- - - --m? e- c 

Theorem 5. Let operator T be entirely continuous on open set Q c ~ ,  
into a Banach space E ' t E  (thus T is also entirely continuous as an opera- 
tor in E ) ,  and projection operators Pn 
bounded and tend strongly toward the operator of the insertions of E' into 
E. 
uously differentiable according to Frechet in point xo as an operator from 
E in E'  (in just the same manner as an operator in E), and furthermore let 
the homogeneous equation h = T(xo)h have on the trivial solution h = 0. 
Finally, let operators Sn (n = 1,2, ...) be continuous and diff rentiable 
according to Frechet (as operators in En) on the set 'n = 9 n E n [  and let 
conditions (5.16) be satisfied. 

as operators from E'  into E are 

Let equation (2.1) have the solutionxoES!bnd let operator T be contin- 

Then the conditions of theorem 3 are satisfied. 

30 = TQFE E'*b and according to the condition of the theorem, 
anyvalue of Z E  E'!. Therefore IIP(");coll-+ 01, and condition 1) 

of theorem 3 is satisfied. Furthermore, the Frechet derivative of an en- 
torely continuous operator is an entirely continuous linear operator (see 
4 ) ) .  Thus T'(xo) is entirely continuous from E into E ' ,  and since Pn+ P 
strongly (P is the insertion operator of E' in E), it follows that 
l l p ( t a ) ~ ' ( ~ o )  11 3 0 \ when I )  --t go. We obtain 

/736 - 

There P(n)T' (x) is considered as an operator in E, P(") = P - Pn is consid- 
ered as an operator from E' into E, and T'(x) is considered as an operator 
from E into E'. 
(n = 1.2 ...) are bounded in the seti!, and according to the condition oftheor- 
em 

According to the Banach - Steinhaus theorem norms, llP(n)ll 

. l ;y(x) -- Y"(zo) II 3 0 when Ilx - all Therefore, f o r  any value of E > 0, 
oE r 0 and nE carf'be pointsd out,  
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Thus, condition 3) of theorem 2 is satisfied; the remaining conditions of 
Theorem 2 are satisfied in an obvious manner. 

Theorem 5 is valid, in particular, when E' = E; operators Pn in this 
case must tend strongly toward the single operator. 

Let us finally point out a result, close to theorem 5*  
which follows from the corollary and remark 1 to theorem 1 and from lema 
1. 

Theorem 5'. Let operator T be entirely continuous on an open set 
Q c E a s  an operator from E into the Banach space E' E, continuously in- 
serted into E, and let projection operators Pn, as operators from E' with 
E, be bounded and tend strongly toward the operator of this insertion of 
E' into E. Let equation (2.1) have the solution ZOE 5 2 ,  and let operator 
T be differentiable according to Frechet in point xo as an operator from 
E into E', the homogeneous equation h = T'(xo)h having only a trivial so- 
lution*.) Finally let operators Sn (n = l, 2, . . .) be entirely contin- 
uous in the set an = Q f lL# (as operators in En), with 

n-F 00, SUP Ilsnzll* 0 when 
XEQn 

Then such values of no and & > O ,  will be found, that the solution of 
equation (2.1) is unique in sphere ~ l ~ - ~ ~ l l  < a0 
(2.2) has in this sphere at least one solution Xn. 
occurs when n+oo and evaluation (5.1) is valid. 

and when n > no equations 
Convergence Ijz,-zolj--tO 

The uniqueness of approximation Xn under the conditions of theorem 5 '  
can be violated. 

An analogous modification may be established for theorem 4 .  

76 . Combination with the Newton Method 
Although equation (2.2) is solved more simply than is the initial 

equation (2.1), nevertheless the direct solution of this nonlinear equation 
can lead to great difficulties. Therefore it is of interest to consider 
the question of an approximate solution of equations (2.) themselves. In 
this section let us point out the possibility of utilizing Newton's method 
for this purpose. The utilization of Newton's method not to the initial 
equation (2.1) but to equations (2.2) is advantageous with respect to 
numerical realization. 

For the duration of this section we assume t h a t  

E i C E , C . . . C B , C . , .  . 

1737 - 

* From this it follows (see ( 4 ) )  that xo is an i so l a t ed  solution of non- 
zero index,  
assume this continuous differenciability of operator T. 

Let us note, that in distinction from theorem 5, we now do not 
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We consider operators T, PnT, and Snto be differentiable (it is sufficient 
to satisfy the condition of theorem 3 ) .  
us introduce the designation Tn = PnT + Sn. 
act in subspace En. 

To abbreviate the notation, let 
Operators T, and Tn'(x) ( X E E n ) l  

The simplest scheme of applying Newton's method to the solution of 
equations (2.2) consists in the following. At some value of n = no, there 
exists and initial approximation Xn0,o of the solution xno of equation (2.2) 
Let us improve this initial approximation by performing in (2.2) one itera- 
tion according to Newton's method (see 2) ) .  The obtained element xnO, 1, is 
taken as the initial approximation z,,,tt,o , of the solution of equation (2.2) 
when n = no + 1, etc.: 

xn,i  = zn,o - [ I  - T ~ ' ( G ~ , o ) ] - ' ( G ~ , o  - TnZn,o) j , 
(tn,i = sn+i,o; n = no, no + 1, .)-, '1 

It would be natural to consider a more general iteration scheme, performing 
for each value of n, generally speakinn. several iterations*): 

. xn, A+L = zn;k - [ I  - Tn'(&a,A)]-' (xn,k - T n S n d  I 
. .  . ( G 4  1 

(k = 0, . . . ,Zn; t n  2 0; zn, l,l+i = zntl .0;  n no + 1, * I *  
Theorem 6 .  k t  the conditions of theorem 3 be satisfied. 

Then if the initial value of n = no is sufficiently large, and the 
initial approximation xno,o is sufficiently close to solution Xno of equa- 
tion (2.2) when n = no, then iteration scheme ( 6 . 1 )  is realizable and 
llxno, __soli -+o 

a sufficiently small value of 8 >  0, such that 

when n+ 00 (xo is the solution of equation (2.1)) . 
Proof. By virtue of (5,5) and convergence Ilz, -z,,I/-+-o there exists 

I 

U [ I  - Tn'(z)]-'ll < x (Ilz - znll < 6, '5 E E,; ' n 2 no). (6.2) 

If necessary, by decreasing d and increasing no, we can obtain result that 
1 

SUP IITn'(x),- Tn'(?n-) I I  < -. 
Ur-x ,1526 4 X  

Increasing no once again if necessary, we shall consider that 

I\%-zrnll 2 when m n 2 no. 4 

( 6 . 3 )  

( 6 . 4 )  

* At some values of n, it is possible not to iterate at all, taking 
n. as an approximation of z , , + ~ + ~ , ~  (m > O).- To formally coordinate c 

this jump with ( 6 . 1 ) ,  it is necessary to exclude from sequence {E,) all 
subspaces between E, and En+m+i , ,  i.e. , to redesignate E n t m + j  with En+j 
and analogouslj dith T m + m + i  and ~ n + ~ + i , k  (f = 1 , 2 ,  . . .) . 
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This value no we shall take as the initial one in iteration scheme (6.1). 
Let us show that if the initial approximation xn,,O belongs to sphere 
\It -- snoIl <:f, then iteration scheme (6.1) is realizable and leads t o  the 
converging process. 

/738 - 
~~ 

I Let  US assume that for certain values of n and k ( n > n o ,  O G k  G Z n )  ; 

Then operator 
the approximation 
fied, in particular, by the initial approximation Xno,O). 

xn, k I is defined and b l t ,  A - G11 < 6, (this condition is satis- 

I - T,,'(zn,k)' 

find 

is invertible (see 6.2)) and, consequently, approximation 
Zn,A+i exists. Preceeding from (6.1) and using the equality Xn = Tnxn, we 

Zn,k+I - 5, = X n , k  - xn - [I - Tn'(Xn,k)]-i(Zn,k - T n r n , k )  = 
- - - [I - Tn'(-G~,k)l-~ [Tnxn - Tnxn,h - Tn'(rn,k) (5, - xn,A)]-) 

Hence, taking into account (6.2) and inequality (4.3) for operator Tn, we 
obtain 

1 
I l ~ n , k + i - x n I l  < Y. Ilxn,k-znIl  SUP l l ~ n ' ( s ) - ~ n ' ( s n , ~ ) l I .  

I I k x  n, k K 6  . 

When 11s - Xn, SI\ 1 we haveh - ZnII < 26,and, in view of (6.3) 
SUP IITn'(2)- Tn'(Xn, k) I I  < SUP IITn'(z) - Tn'(xn) I I  +I 

Ilx-x,, k I I e  I~x-x IK26 
4 1 

We have convinced outselves, in particular, thatX,,A+i also belongs to 
spherells-snII <&:; consequently, with a fixed vaue of n it is possible 
to perform any number of iterations (6.1) with respect to k. These we 
s ha1 1 have 

which, joint with ( 6 . 4 )  yields , (recollect that x n ,  l,,tl = z n t i ,  0)' 

(6.6) II zn+i, 0 - zn+i I1 G I I  zn, ~,+i - zn I I  +# II x n  -. s n + t  II < 6. 
Thus, G+I, o enters into spherells - ZntiII < dand , as a consequence of induction, 
iterations (6.1) are realization for all values of n >  no. 

Let us prove thatllt,, o - xo\bO when n 4  According to what has been 
proven, we have (see (6.5) and (6.6)). 
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I .  

I t e r a t i n g  t h i s  estimate with respec t  t o  j ,  we f ind  

when 

It can e a s i l y  be seen t h a t  from l i m  e, = 0 i t  follows t h a t  / 739 
lim (-++,,+ ei E2 ...+e,,,)= 0, j 
m+m 2m-1 

and in  our case t h i s  s i g n i f i e s  tha t l l sn ,o-~JbO when n- t  -.\ Since 
l l z n  I xoll --t 0 when n -+ 001 , it a l so  follows thatlls,,, - r ~ ~ l J ! e O  when n -+ oo.! 

Theorem 6 has been proven. 

It i s  poss ib le  t o  combine (2.2) with the modified Newton method i n  
var ious ways. 
f o r  word t o  t h e  i t e r a t i o n  scheme: 

The theorem 6 and i ts  proof can be t r ans fe r r ed  almost word 

Here operator  I - Tn'(x) i s  inverted a t  each value of n only i n  the  one 
poin t  Xn,o, and several i terations are performed wi th  r e spec t  t o  k. Of 
g r e a t  interest are i n e r a t i o n  schemes i n  which operator  I - Tn'(x) i s  in- 
ver ted  only f o r  an i n i t i a l  value of n = n,, s ince  as n increases ,  t he  d i f -  
f i c u l t y  of inver t ing  t h i s  operator  rapidly increases .  
r e s u l t s  i n  t h i s  d i r ec t ion ;  The proofs are analogous t o  the  proof of 
theorem 6 .  

Let us note  some 

Theorem 6 .  L e t  t he  conditions of theorem 3 be s a t i s f i e d .  

Then i f  t h e  i n i t i a l  value of no is s u f f i c i e n t l y  la rge ,  and the  i n i t i a l  
approximation xnojo i s  s u f f i c i e n t l y  c lose t o  so lu t ion  Xno of t he  equation 
(2.2) when n = no, then the i t e r a t i o n  scheme 

Zn,C+i = z n , h  - rO(xn,k - Tnzn,k) I 
(IC = 0,. . . , In ,  Zn 2 0; zn,l,,+i =z zn+tso; n = no, no + 4 %  a) 

i s  r e a l i z a b l e  and leads t o  a convergent process (i.e., l[x,,,~-z~li -+Owhen 
n r+ M) i n  any of t h e  following three  cases: 

1) ro = [ I  - Pne l ' ( zno ,  o)]-'; 

2) ro = [ I  - PnoT'(Tno,  0 )  - Sn:(znO, 0)Pno]-',' operator  Pn i s  bounded i n  E and 
~]pn~~sn~-b  0 &-hen n 4 oo,! where 

% €  Q, 

3)  ro = [ I  - T,,;(G*, o~!noI-'t' operators  Pn are bounded i n  E and 

Sn' = SUP lI&a'(z) 11; 

tend s t rongly  toward a s i n g l e  operator,IIT'(so)fl")lI +Owhen n+ 
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Great interest is afforded by effective conditions for the initial 
value of no and Xno,o, which guarantee the convergence of the various 
iteration schemes. With definite assumptions about the smoothness of 
operators T and Tn, such conditions may be derived on the basis of the 
results of (5). 

7. A posteriori estimate of error 

The basis in the determination of a posteriori error estimates is the 
corollary of theorem 2. 
are satisfied, then this corollary permits us in principle to obtain asymp- 
tomatically precise estimates for norms llzn -z,$l,\ i.e., such estimates 

Let us note that if the conditions of theorem 3 

(Isn - zoll < pn, ' that'ig -z,,jJ 1 pn --+ 1 when n --t 00, 
11 [ I  - T'(zn)F\ (n >nil under the conditions of theorem 3 are bounded as 

Actually, the norms 

a set (see 5.3)) and, by assigning an arbitrarily small value to q ( O <  (I< I ) ,  /740 
it is possible to find such values of d > 0 and n , that values 3. = x.. and 

inequalities (4.8) and (4.9) hold true, an3 together with them esti- 
:2:?4.10) also holds true. In view of arbitrariness of q, this signifies 
that estimate (4.10) is asymptomatically precise. 

The practical application of estimate (4.10) is possible if the esti- 
Estimation of this norm repre- mate of the norm II[r - Z''(~n)]-'l[, is known. 

sents, generally speaking, a difficult problem. One possible, and the most 
natural way of overcoming this difficulty consists in reducing this problem 
to the more simple problem of estimating norm ! \ [ I  - P n T ' ( Z n )  - Sn'(zn)]--lll B &,;I 
the latter norm can frequently be estimated in the process of finding solu- 
tion % of equation (2.2) 

Lemma 2. Let the operators T, PnT and Sn be differentiable in point 
x.EQ,, ( P , T ) ' ( Z . ) = P n T ' ( s . ) ,  
in En, 

operator I - PnT' (x.) - Sn' (x*) being invertible 

(7.1) II [ I  - PnT'(X.) - sn'(x.) ]-'II < xn. 
Then if 

it follows that operator I - T'(x*) is invertible in E and 

* An analogous assertion may be obtained by applying theorem 4(1.XIV) 
from (2) ,  if operator 1 - T'(x*) possesses the following property: 
the existance of a left-hand inverse it follows that there exists a bilat- 
eral inverse. 

from 



Proof*) of the lema is based upon the following simple facts (see 
(2)): 
operator B satisfies the condition 
also invertible and 

if A is a linear invertible operator in Banach space F, and linear 
/loll IIA-ill < 1, /  then operator A + B 

Applying this proposition when F = E,, A = I - PnT'(X*), B = Sn'(w), we 
obtain by virtue of conditions (7.1) and (7.2) the result that operator 
I - PnT'(x*) is invertible in En and 

(7.4) 

The operator in the right-hand part of (7.5) makes sense for any value of 
XEE, since before [I - P~T'(x*)]-~ stands the operator Pn of projection 
into En. 
of (7.5) is the inverse of I - PnT'(X*) in the entire space E. 
erator I - PnT'(x*) is invertible in E, and by virtue of (7.4) and (7.5) 

Direct calculations show that the operator in the right-hand part 
Thus, op- 

Applying the assertion formulated at the beginning of the proof of the 
lemma, when F = E, A = I - PnT' (xd;), B = -P p>T' (x*) 
tions (7.6) and (7.2) we arrive at estimate (7.3). Lema 2 has been proven. 

/741 - 
by virtue of condi- 

Theorem 7. Let operator T, PnT and Sn be differentiable according to 
Frechet in a vicinitp) of point 5, E Qn>i operator I - PnZ"(fn) - Sn'(Zn) ' 

being continuously invertible in En. Let 

(7.7) Xn = II [ I  - Z'nT'(Zn) - Sn'.(fn)]-iII 

and 

.. c 

*) It is sufficient for PnT and Sn to be differentiable only in the - I  
point 3&,,% 86 an operator in En, and for PnT to be differentiable 
operator in 'E, (PrnT)*(zn) = PrnT'(5,). , 

*) It is assumed that sphere ! l X - g n ! l  -& is contained in ,Q 

1 .  --.  _ _ _  . 

K- - P 
t k,.+ 

" *.. 
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are satisfied. 

Then equation (2.1) has the solution z0 Q/ and the error estimate 

where 

(7.10) 

(7 . 11) 
is valid. 

If conditions of theorem 3 are satisfied andllzn - zoll-+O en n-tmc / 
then such values qn, which satisfy the given conditions-, -can k e so selected 
that q n 4  0 when n-, cx and the estimate (7.10) will be asymptomatically 
exact . 
- Proof. The solubility of equation (2.1), estimate (7.10), and ine- 

quality (7.11) for &n proceed directly from the corollary of Theorem 2 and 
from lemma 2, If the conditions of theorem 3 are satisfied and 
the norms (7.7) are bounded as a set (see (5.5)). Using condition 3)  and 
4 )  of theorem 3 ,  we become convinced that qn’-+o 
quently, valuesz,’ are also bounded as a set. Let us take an arbitrarily 
sinale number q >O. 
and condition 2) of theorem 3 ,  there will also be found such values of 
6 > 0 and p, that inequalities (7.8) and (7.9) will occur when 6, == 6,, 
qn = q and n >ng. 
be also related that qn-0 when n+m. Theorem 7 is proven, 

-Sol \  -P o v  I 

when n 4 o o  and conse- 

By virtue of correlationship - soli + 0, llZn - TZnll-- t  01 

And this means that qn and 6 n  may, in (7.8) and (7.9) 

¶ 8. Application to integral equations. - I742 

Let us consider the nonlinear integral equation 
h 

with a continuous kernel K(t, s, u). 
ula 

Proceeding from the quadrature form- 

b 31 

5 (S)(ZS aj,lz (sjn) + R ~ ( z )  (a  < s i n  < s2.n < < snn G b ) ,  (8.2) 
a j-i 

We shall instead of solution xo(t) of the equation (8.1), seek its value 
in the points of interpolation sjp.\. 

kjn W So(sjn) 

We determine approximate values 
equation from the system of 
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This system is obtained from (8.1) if the integral of K ( t ,  s,  x(s)) is re- 
placed in accordance with quadrature formula (8.2) (in which the residual 
term R , ( z )  is disregarded), and then if to variable t are successively 
given the values Sjn,::.~ Snn' 

Theorem 8. Let the coefficients ajn 1 (j = 1, ...,n) of quadrature 
formula (8.2) be positive, for each value of n, and let quadrature process 
(8.2) -converge, i.e., for any function z ( s )  which is continuous on segment 
[ a ,  b ] ~  let the relationship 

b n 

be satisfied. 

Then if equation (8.1) has an isolated solution xo(t) with a nonzero 
Index and kernel K ( t ,  s ,  u) is continuous for a set of variables in the 
domain 

then with sufficiently large values of n equation system (8.3) has the so- 
lution h,. . . , inn' 

when n-+co. 

If in domain (8.5) there exists a continuous partial derivative 
J(t, s ,  u)/ u and the linear integral equation 

(8.7) 
a 

has only the trivial solution lL(t) = 0 *I, then the solution of system 
(8.3) is locally unique: such a value d o >  O . ,  independent of n, is found 
with sufficiently large values of that n system (8.3) has a single solution 
which satisfies the condition I 743  - 

* From this it already follows that the index of solution xo(t) it 
differs from zero. 
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Y J 

where 

rn = D ~ X :  I ljn (zin) I 8 Zin (8) = K (sin, S, z~(s) 1. (8.9) 
isZi<n 

Several same complements and generalizations are indicated in the con- 
cluding part of the section. 

Let us preface the proof of the theorem with one auxiliary result. 
Let us adopt the prepositions of the theorem concerning the positiveness 
of aj,, ,and convergence of quadrature process (8.2). When z ( s )  I 1, it fol- 
lows &om (8 .4)  that 

" . ,z ajn ( b  - a )  + yn, Yn30 when 
j=1 

(8.10) 

(8.11) 

Let us introduce subjects 
followina rule. 
Djn = Jjn 

C [il b]  (i = 1,. - - , .)I . according to the 
If s j n  E Jjn ( j  = 1,. . , , n), 

(j = 1, . . . , n). 1 . 
then we simply assume 

In the contrary case we transfer point sjn to 
Jjat I 

n 
Djn .= (Jjn\ U Sin) U Sjn (f = 1, * 9 n) ' 

11.1 

(in this notation sjn is regarded as a one-element set consisting of the 
number sjn). It is clear that 

(8 . 12) 
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Our purpose is to show that the diameter of subset Djn tend toward zero: /744 - 
dn= Inas SUP Is’-s’’I-+O’W~~~ n-pm, 

l<j.Sn s‘,s”ED jn (8.13) 

Relationship (8.13) can be violated for two reasons: either the lengths 
of intervals Jjn do tend toward zero when n-+oo, or some points sjn are 
situated far from the corresponding values of Jjn. 
both cases quadrature process (8.2) does not converge, in spite of the 
condition. 

Let us show that in 

The length of interval Jjn is equal to jn, and in the first case such 
a sequence fljknk I can be found that 

(8 . 14) 
where 11 is a positive constant. 
one can be considered that the corresponding sequence of points of inter- 
polation converges: 

Switching, if necessary, to assubsequence, 

s jqnA -+ so E tu, bl when n +- m. 

For a function*) z ( s )  which is continuous on [a, b] , equal to 1 when 
1s - S O /  < t j / 4 ,  equal to Q wken 9 14 <. 1s -.sol d ?I /2, and linear when 

1s- sol 2 q1/2, we nave 
b 

0 
(8 . 15) 

On the Other with sufficiently large values of k , the point sjknk gets 
into in which z (s) f 1, therefore 

x . a j n k z ( s j n , )  2 ajAnA; 

IS - Sol < q /4, 
n A  

j=l 

using conditions (8.11) and (8.14) we get with large values of k 
9 nh 

ajn,z(s jn , )> ,  P j k n h - ~ ~ ’ I / ~ ~ ~ l  
- __ -- I - -  - j z l  _- 

~ 

Comparing this with (8.15), we come t o  the conclusion, that quarantine 
process (8.2) does not converge for the constructed function. 

of points 
of interpolation, the distance from which to the corresponding intervals 
Jjk nk exceeds a number q > 0. Proceeding, if necessary, to a subsequence, 
let us consider that every point s j L n k /  is situated on the same side of cor- 
responding value of Jjr;nl. I (for the sake of definiteness, on the right-hand 
side) and that the right-hand ends of intervals J j r n k  tend toward k + 

to a certain limit 

In the second case, there can be found a sequence sjk ,, 

si e [a, b ] . ’  

* Here is investigated a case where SO s (a,  b ) ;  the number 11 > 0 may 
then be considered so small that so enters into lo, b1 
vicinity {oo--9-: 
constructed analogously. 

together with the 
‘@+?I). In a case where so = a or so = b, function z(s) is 
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I .  

j k  

I 
The right-hand end of intervalJjknh, has this form of u + ~ ~ ~ j n , , . i  Therefore /745 - 

j h  

~ f i j n k 3 : s i - a  when kk'm,l  
j=i i 

and in view of (8.11), also 
j, I xajnk -+ s1 - a ,when I t 4  00. 

j=i 

(8.16) 

For a continuous function z ( s ) ,  equal to 1 when's'< s < si, Oequal to 0 when 
s1 -b 9 /2'< s < b and linear when si < s < st -b 11 /2, we have 

1? b 1 z (s )  ds ='(si - a )  + - 4 . (8.17) 
a 

On the other hand, 
n h  j k  nh 

j=i j=i J=f*-I-i 
I 3 ujn hz(sj*k G ajnh + ajn ,,Z(Sjn,). 

With sufficiently large values of k, the second sum in the right-hand part 
of the inequality vanishes. Actually, since point sjknh. is located to the 
right of J j k n  L' at a distance of >q,'and the right-hand ends j j h . n k ,  
toward st,; It follaws that 
moreover Sjnl; >s jk  nl;>st+T/2iwhen j > j i t  a d  the same values of k ,  i.e., 

sink 
have 

tend 
$7,. as> SI f q / 2  \with large values of k{ and 

Thus, with large values of k we gets into the domain where z ( s )  = 0. 
" k  

j=l 

Comparing this with (8.16) and (8.17), we see that quadrature process , 
(8.2) does not converge for the constructed function. 

The proof of relationship (8.13) is completed. 

Proof of theorem 8. We shall regard equation (8.1) as operator equa- 
l/zn= sup 1 ; 2 ( s ) I i  bounded and 

O < S C b  
tion (2.1) in Banach space E of funztions 
measured on segment [ n , b ] I  , 

The continuity of kernel K(t, s, u) ir.. domain (8.5) has a as a consequence 
the complete continuity of operator 

' b  

Z'X = J' K ( t ,  s, s ( s ) ) d s  . 
a -  
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on sphere 6 (b _ _  - zOll *) 
functions t h a t  are continuous on [a, b ] .  
uous on sphere Q. as an operator  *] i n  E .  

as an operator from space E i n t o  space C of  
Moreover, T i s  completely contin- 

. I  

We shal.1 demote by x. (s) t h e  cha rac t e r i s t i c  funct ion of t h e  above- /746 - Jn constructed se t  D j n :  

Let En be t h e  l i n e a r  envelope of  functions x 
En i s  a closed subspace i n  E .  Let 11s i n t r o d c e  i n t o  En the  oFerator  Tn, 
determined on t h e  b a s i s  of Szn = 

(j = l , . . , ,  n ) .  Obviously 

t o  t h e  formula nEn and ac t ing  accordinn 
n n  

Tnzn = 2 { 3 WnIC(sin7 Sjn, Gj) 
i.=l j=l j=l 

From t h e  l i n e a r  independence of functions xin ( i  = 1, ..., n) the re  follows 
t h e  equivalence of  system (8.3) t o  the operator  equation 

(8.18) 
xn = Tnxn 

i n  E . 
...,"Snn) w i l l  be t h e  so lu t ion  of  system ( 8 . 3 )  when and only when element 

The equivalence i s  understood i n  the  following sense:  vec tor  (Sin, 

n I 

w i l l  be t h e  so lu t ion  of equation (8.18). 

Let us furthermore introduce t h e  l i n e a r  operator  Pn, which assigns t o  
each funct ion z(s) E E t he  function 

From (8.12) it follows t h a t  Pn(E) = En and Pnzn = zn f o r  Z n E E n ,  

P, is  a l i n e a r  operat ion of project ion f o r  subspace En; Pn is  bounded I1PnI1 = l /  
Furthermore, for any funct ion x(s )  which is  contiuous on [a,b] w e  have 

niax 1 .t(s)- xz(s jn)Xjn(S)  1 -+o when 

, i.e. 

n 
0°* 

J=i a<&b 

s ince  according t o  what has been proven (see [8.13)),  when n + m ,  t h e  
diameters of subset  D e  tend toward zero, and Sjn E Djn.  In  o ther  
words, t h e  sequence ognoperators Pn tends s t rongly toward t h e  operator  
of t h e  in t e r sec t ion  of space C i n t o  space E .  

We s h a l l  write equation (8.18) i n  t h e  form of  the  perturbed Galerkin 
method : 
*> The index of  t h e  so lu t ion  xo( t )  does not depend upon space E or-C. i n  
which equation (8.1) i s  inves t iga ted .  
28 



(8.19) 

Operator Sn i s  contindous and i n  view of the f i n i t e  dimensionality of En, i s  
a l so  completely continuous on d . c we have - 1747' n For 

n Z, LjXjn E Qn 

(we used re la t ionships  (8.10) and (8.12). Hence *) 

We have proved that f o r  the  equations (8.1) and (8.19) the  conditions 
of theorem 1 have been s a t i s f i e d  (see a l so  the  coro l la ry  and comment 1 t o  
it **). In t h e  indicated theorem equation (8.19) o r ,  what i s  the  same, 

*) Here and hencgforth we make use of the obvious f ac t  t h a t  f o r  a function 
of t h e  type,, 5=. 2 qtXcn" there  w i l l  be 11v,ti- may i T I i 1 .  

f o r  a function ;?the type 

I n  p a r t i c u l a r ,  
- .  %f<n 

we have 
n n 

= ( b - a )  mnx sup I v i j ( s ) l .  
I < f . j C n  

**) The r o l e  of  space E '  continuously inser ted  i n t o  E i s  played by space C .  
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equation (8.181, a t  s u f f i c i e n t l y  large values of n have t h e  so lu t ion  xn and 
IIXn - sol1 4 0  when n -+ a. But a t  t h e  same values of  n ,  according t o  what has 
been proved, equation system (8.3) is so luble ,  and from t h e  inequa l i ty  

(8.20) 

the re  follows t h e  convergence (8.6).  
proved. 

The first p a r t  o f  theorem 8 has been 

The existence of p a r t i a l  der iva t ive  ali(t, s, U) which is  con- 
tinuous i n  domain (8.5),  leads t o  t h e  continuous d i f f e r e n t i a b i l i t y  of oper- 
a t o r  T i n  poin t  xo (as an operator from E i n t o  C and even more s o  as an 
oe ra to r  i n  E) and furthermore ’ 

This same condition guarantees the  d i f f e r e n t i a b i l i t y  o f  operator Sn 

while f o r  )in 3 lljXjn and zn E Qn, w e  have 
4 

V I ,  

j= 1 

Hence, u t i l i z i n g  t h e  uniform continuity of  dK(t ,  S, U) /$u i n  t h e  
closed domain (8.5) as  above, we f ind  t h a t  

sup ilSn’(X)11+0 when + 00.1 

I En, 
Also taking i n t o  consideration t h e  hypothesis of only a 0 so lu t ion  (8 .7)  
(equations h = T’(x0)h) , we can c e r t i f y  t h a t  a l l  conditions of theorem 5 
have been s a t i s f i e d  and even more so those of theorem 3 .  According t o  
theorem 3, t h e  so lu t ion  xn of equation (8.19) with s u f f i c i e n t l y  l a rge  
values of n i s  unique i n  sphere 11s - soli < &,I of s u f f i c i e n t l y  small 
radius 6,, and t h i s  i s  equivalent t o  confirhation of t h e  theorem being 
proven concerning t h e  loca l  uniqueness of  t h e  so lu t ion  of system (8.3). 

Evaluation of (8.8) proceeds from (5.13) and equa l i ty  (8 .2Q)I i t  i s  
necessary only t o  note t h a t  IIP,Txo - TnP,sol[ = rn,: where rn is a number de te r -  
mined by r e l a t ionsh ips  (8 .9) .  

Theorem 8 has been f u l l y  proven. 

/ 748 - 

Remark. On t h e  b a s i s  of so lu t ion  Sin, ..., En, of t h e  system (8.3),  an 
I t  i s  most a n a l y t i c a l  approximation can be cons t i tu ted  by various methods. 
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convenient t o  assume 

s ince  compilation of this function does not require  addi t iona l  ca lcu la t ions .  
I t  can be e a s i l y  seen t h a t  under the  conditions of t he  second p a r t  of theor-  
em 8, estimate 

maX l fn(t)  - ~ o ( t ) I  <C[Rn(zt ) [ ,  zt(s)  - I.'(t* '9 '@(')). 

a q t g b  
i s  va l id .  

I749 - Theorem 8 can without d i f f i c u l t y  be generalized i n t o  equation 
b b 

t ,  s lii(t,s,Z(s))ds,.. . ,  s I~ , r . ( t , s , s ( s ) )dS  j ,  
I7 a 

(8.21) 

where f ( t ,  z l ,  .... zm) and Ki(t,S,U) ( i  = 1, ..., m) a re  continuous f o r  t he  
s e t  of t he  var iable  function; an analog o f  system (8.3) has the  form of 

n n 
v -  11 

11 g in  f (Sin, a j n l i ( s i n ,  sjnr t j n ) ,  - Z a j n K ( s i n 3  sjnc Ern) 

( i =  I r . . . * n ) .  I 

j=- 1 j=l I 

Boundary value problems f o r  conventional d i f f e r e n t i a l  equations may be re -  
duced t o  equations o f  t h e  type (8.21). 

Let D be a closed domain i n  an m-dimensional Euclidian space, t = ( t l ,  
.. . , t m  ) ,  s = ( s i , .  . .,sm). 
formula 

Let us assume t h a t  each node Sjn of "quadrature" 

n 

\ z (s )ds  = ajr.z(Sjn)+ R n ( Z )  (ajn > 0; Sjn E ') 
D j=l 

may be included i n t o  the  measurable subset DjnC D i n  such a manner t h a t  con- 
d i t i o n s  which a re  analogous t o  (8.12): 

n 
n 

U D j n  
j=l j= 1 

Ls, Din 17 D j n  = 0 when i # j ,  rues D j n  = ( ~ I C S  D I 2 a,,) ajna 

would be s a t i s f i e d ,  and furthermore t h i s  being the most important of a l l ,  
subse ts  D .  
without s 8 s t a n t i a l  changes, t o  the  equation 

tend toward zero. Then theorem 8 and i t s  proof a re  t r ans fe r r ed ,  

z( l )= 5 K ( t , s , 4 W s .  
D 

The question remains open whether a subdivision of  D i n t o  subsets Djn, which 
possesses the  enumerated proper t ies ,  always e x i s t s  f o r  a converging quadra- 
t u r e  process.  
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Let us f i n a l l y  ind ica te  some bobliographical references.  The conver- 
gence of the method of mechanical quadratures ( 8 . 3 )  f o r  t he  nonlinear equa- 
t i o n  (8. l )  i n  t h e  case of Gauss in te rpola t ion  formula was establ ished i n  [ 6 ] .  
In [7]  (a l so  [8]) a pos t e r io r i  e r r o r  estimates have been derived i n  the  case 
o f  an a r b i t r a r y  quadrature formula; the question of convergence was not 
invest igated-  
second der iva t ive  with respect t o  u i s  required from kernel K(t ,s ,u) .  
orem 8 apparently contains new r e s u l t s  a l s o  i n  the  case of a l i n e a r  equa- 
t i on  ( the  case of K(t,s ,u) = G(t,s)u + f ( t ) / ( b  - a ) ) .  For a bibliography 
of works, concerning the  method of mechanical quadrature f o r  l i nea r  equa- 
t i ons ,  see  [9]  and a l so  [ l] ,  [Z]. 

In the  quoted works, continuity together  with the first and 
The- 

/ 750 ¶ 9. Application t o  More General Types of Equations - 
By means of subs t i t u t ion  of t he  desired elements, the  r e s u l t s  of  the 

previous paragraphs can be t ransfer red  t o  equations with unbounded operators.  
Let us consider the  equal i ty  

Au = Bu (9.11 

where A i s  a l i nea r  (generally speaking unbounded) operator and B i s  a non- 
linear operator  from Banach space @ I  in to  Banach space E.  
of determination D(A) of operator A be dense i n  9'  , and l e t  t h e  domain o f  
determination D(B) of nonlinear operator B be i n  an open subspace A C B ,  
and furthermore 

Let the  domain 

I t  i s ,  i n  addi t ion assumed tha t  operator A is i n v e r t i b l e  and t h e  inverse 
operator A - l  is  bounded and determined on t h e  e n t i r e  space E. 

In appl ica t ions ,  cases of ten  occur i n  which, although operator A - l  
i s  bounded, it i s  determined only on a dense s e t  i n  E. I f  i n  addition it 
is  a l so  known t h a t  A permits closure of A, then operator  w i l l  already 
s a t i s f y  t h e  establ ished condition, i . e .  A has a bounded inverse operator,  
defined on a l l  of E .  Therefore, we assume t h a t  t he  closure o f  operator A 
has already been ef fec ted  . 

I t  should be kept i n  mind t h a t  with t h e  closure of operator A, inclu- 
s ion  (9.2) can be v io la ted ,  and i n  such a case, simultaneously with the  
closure of A it is  necessary somehow t o  expand operator B .  

Let {En) be a sequence of closed subspaces i n  E ,  l e t  Pn be a l i nea r  
operator  of project ion onto subspace E,. Let us denote 

En = A-'(li'n) (En c E; n = I ,  2 , .  . .>. 
As approximate so lu t ions  of equation (9.1) a r e  adopted the  solut ions of 
equation 

where Cn i s ,  generally speaking, a nonlinear operator from I n  i n t o  En 
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determined on the set 
(9.3) also act from en into En. 

A n  = A n Operators A and PnB in equation 

The substitution 

x = Au (9.4) 

reduces equation (9.1) to the equation 

x = TX (T = BA-~) (9.5) 

in space E, and reduces equations (9.3) to the equations 

(2' = BA-'; 

in subspace En. 
in set E ( see (9.2)) 

The domain of determination of operator T = BA-I is open 

Q = ( ( ~ : Z E E ,  A-iXEA),' 

I 
and the domain of determination of operator Sn = CnA-l is set Q n S Q n E R i  

Let the domain of determination of operator PnT also be R ,  i.e. let set T(R) 
enter into the .domain of determination of operator Pn. 

After these remarks, the results of  the preceding sections are directly 
transferred to equations (9.5) and (9.6) , and at the same time also to equa- 
tions (9.1) and (9.2), which are equivalent to them. We do not cite the 
formulations due to their obviousness. It can be shown that in the case of 
linear equations, substitution (9.4) leads to the same results as does the 
method, different in form, of reduction to the equations of the I1 kind, 
which was used in [l] , [2] . 

/751 - 

The author is sincerely greatful for a series of useful comments by M. 
A. Krasnosel'skiy. 
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